COLLINSVILLE STATE HIGH SCHOOL

 Mathematics Education Plan 2022
 understandings of:

- Number and place value - apply the four operations to rational numbers and integers and solve problems.
- Real numbers - make connections between percentages, fractions and decimals, calculate a percentage of a quantity, percentage increase and decrease, discount, profit, loss and GST, and problem solve in a range of contexts includi, recurring decimals, link fractions to torminating and recurring decimals and explore irrational and numbers in relation to pi.
- Chance - describe and calculate the probability of 'and', 'or', and 'not' events, represent events in Ventagrams and wo-way tables and solve related the sum of probailite to solve and use the

Students have opportunities to develop

 understandings of- Number and place value - express numbers in index notation, establish the index laws with whole number bases and positive integral indices
- Patterns and algebra - expand and factorise algebraic expressions.
- Using units of measurement - convert units of measure, revise perimeter and area of parallelograms and triangles, develop formulas for rhombuses, kites, trapeziums and circles, calculate the perimeter and area of rombuses, kites, rapezins perime cond reas understandings of:
- Linear and non-linear relationships - model situations involving proportional relationships, solve a range of problems involving rates and ratios, interpret, model and formulate patterns and relationships, represent patterns and relationships as rules, functions, tables and graphs and solve linear equations using graphical techniques.
- Using units of measurement - solve problems involving time duration, for 12-and 24-time formats, within a single time zone.
- Data representation and interpretation - collect, organise and display data, interpret data displayed in tables and graphs, connect samples and populations, explore he effect of sample size, calculate measures of ce, idre ources of bias and apply this knowledge to ge to make

Students have opportunities to develop understandings of: - Linear and non-linear relationships - apply number laws to algebraic expressions and equations, expand and factorise algebraic expressions, solve simple linea equations algebraically and graphically, connect patterns, linear functions, tables of values, graphs and worded statements, plot coordinates on the Cartesian plane and solve realistic problems.

- Using units of measurement - develop formulas for volume and capacity of rectangular and triangular prisms, solve volume problems involving rectangular and triangular prisms and convert units of measurement.
- Geometric reasoning - revise angle properties (cointerior, corresponding, alternate and vertically opposite), explore congruence, establish and apply the ongruence tests (SAS, AAS, SSS, RHS), extend congruence of triangles to identify the properties of quadrilaterals and solve problems using the properties of congruent figures, reasoning and generalisations, apply understanding and reasoning of area, congruence and plane shapes to develop properties of quadrilaterals.
understandings of:
- Real numbers - Solving rates problems, simplifying rates, identifying additive and multiplicative patterns in direct proportion representing rates graphically and algebraically
- Linear and non-linear relationships - Calculate gradient, calculate the distance between two points on a Catesian plane using Py hagos calculate the midpoint of a ine segment.
- Using units of measurement - calculate the area of composite shapes, calculate the surface area and volume of right prisms and cylinders solve problems involving the surface area and volume of right prisms and cylinders, apply reasoning around volume to d a school.

Students have opportunities to develop understandings of:

- Patterns and algebra - expand and factorise algebraic expressions, expand binomial expressions, sketch non-linear relations and find x and y - intercepts of parabolic functions
- Geometric reasoning - describe the conditions for similarity, draw scaled enlargements, determine scale factors, interpret scale drawings, assess the similarity of triangles using tests, and investigate scale and area.
- Pythagoras and trigonometry - apply Pythagoras' Theorem to check if a triangle is acute, right-angled or obtuse, determine unknown side lengths of right angled triangles, solve problems involving rightangled triangles, apply naming conventions for sides of right-angled triangles, use similarity to investigate the constancy of the sin, cos and tan ratios, investigate patterns in trigonometric ratios, calculate trigonometric ratios using known angle or side length values, calculate unknown side length in right-angled triangles, solve problems using trigonometry, \& calculate unknown angles in right angled triangles

Students have opportunities to develop understandings of:

- Real numbers - understand and use index notation, convert index notation to expanded notation and vice versa, investigate the index laws for multiplication, division, zero index, power of a power, power of a product, power of a quotient, the negative indices and simplify expressions using the index laws, convert numbers from scientific notation to standard decimal form and vice versa, use index laws to solve problems involving scientific notation.
- Money and financial mathematics - use the simple interest formula, rearrange the simple interest formula, solve problems using simple interest.
- Patterns and algebra - review the distributive law, expand and simplify binomial expressions, apply the index laws to expansion, investigate special
- Data representation and interpretation consolidate types of statistical variables, collec primary and secondary data to investigate statistical questions, calculate, interpret and describe statistics from both raw data and data representations using non-digital and digital resources, construct and compare histograms and back-to-back stem-and-leaf plots and use statistical knowledge to draw conclusions.

Students have opportunities to develop understandings of - Real numbers - express numbers using scientific notation and perform operations using the index laws
Linear and non-linear relationships - model relationships between variables and link algebraic, graphical and tabular representations of those relationships.

- Using units of measurement - investigate very large and very small time scales, express time scales using metric prefixes and scientific notation, convert units of time using the index laws.
- Chance -determine outcomes of two-step chance experiments using tree diagrams and arrays, assign probabilities to outcomes, calculate relative frequencies determine probabilities of events (including those involving 'and' and 'or' criteria), organise data and determine relative frequencies in Venn diagrams and two-way tables, investigate data used in media reports (estimale pop, itis used). the validity of statistics used).

10 Students develop understandings of:

- Chance - describe the results of two- and threestep chance experiments, assign and determine probabilities including conditional probability and investigate the concepts of dependence and independence.
Pythagoras and trigonometry - revise Pythagoras' Theorem and solve contextualised problems, apply the trigonometric ratios to solve probe ms, by substituting into formulas, in two and trigonometric prond solve contextualised trigonometric problems including surveying and
orienteering. (Taught in term 1 assessed end of semester 1)

X
Students develop understandings of

- Chance - describe the results of two- and three-step chance experiments, assign and determine probabilities including conditional probability and investigate the concepts of dependence and independence. Evaluate media statements and statistical reports.
- Pythagoras and trigonometry - revise Pythagoras' Theorem and solve contextualised problems, apply the trigonometric ratios to solve problems, by substituting into formulas, in two and three dimensions and solve contextualised trigonometric problems including surveying and orienteering. Perform operations with surds, apply Pythagoras' theorem and trigonometry to three dimensional problems, establish and apply the sine and cosine rules and solve related problems, define and graph trigonometric functions and solve simple trigonometric equations.

Patterns and algebra - apply the four operations to algebraic fractions, manipulate expressions and equations to solve problems involving algebraic fractions, expand and factorise quadratics. Choose appropriate methods to factorise monic and non-monic quadratic expressions

Linear and non-linear relationships -explore connections between algebraic and graphical representations, make generalisations in relation to parallel and perpendicular lines, identify the solution to two intersecting linear equations, apply graphical and substitution methods to find solutions and solve contextualised problems, formulate \& solve real life problems involving monic quadratic expressions and equations, adapt graphing techniques to solve problems involving monic quadratics, make connections between functions and their graphical representations, extend application of graphing techniques from linear functions to parabolas, circles \& exponential functions. Apply the elimination method to find solution and solve contextualised problems, formulate and solve real life problems involving monic and non-monic quadratic equations, transform relations and functions \& simplify expressions involving irrational numbers.

Students develop understandings of:

- Patterns and algebra - apply the four operations to algebraic fractions, manipulate expressions and equations to solve problems involving algebraic fractions, expand and factorise quadratics,
- Linear and non-linear relationships -explore connections between algebraic and graphical representations, make generalisations in relation to parallel and perpendicular lines, identify the solution to two intersecting linear equations, apply graphical and substitution methods to find solutions and solve contextualised problems, formulate \& solve real life problems involving monic quadratic expressions and equations, adapt graphing techniques to solve problems involving monic quadratics, make connections between functions and their graphical representations, extend application of graphing techniques from linear functions to parabolas, circles \& exponential functions.

Students develop understandings of:

- Using units of measurement - recall formulas to calculate area and volume, calculate the surface area and volume of prisms and cylinders, solve problems involving calculating surface area and volume of composite solids
Geometric reasoning - recall angle relationships for straight lines, triangles and quadrilaterals.
- Data representation and interpretation - develop an understanding of statistical measures of centre and spread to describe data sets, analyse data displays (box plots, histograms and scatter plots) to make generalisations, calculate statistical measures of data sets, graphically represent relationships, draw a line of best fit, apply known strategies to compare data, manipulate reports and data displays to idat trends, use measures to analyse data and reports.

Students develop understandings of:

- Money and financial mathematics - recall simple and compound interest formulas, calculate simple and compound interest, connect simple and compound interest, substitute into a formula, connect graphical and problems involving compound interest and loans.

Note: The topic from term 3 not covered in extended modelling and problem solving task will be assessed in end of semester 2 exam.

Students develop understandings of

- Using units of measurement - recall formulas to calculate area and volume, calculate the surface area and volume of prisms and cylinders, solve problems involving calculating surface area and volume of composite solids. Solve problems involving calculations of volume and surface area of pyramids, cones and spheres.
- Geometric reasoning - recall angle relationships for straight lines, triangles and quadrilaterals.
- Data representation and interpretation - develop an understanding of statistical measures of centre and spread to describe data sets, analyse data displays (box plots, histograms and scatter plots) to make generalisations, calculate statistical measures of data sets, graphically represent relationships, draw a line of best fit, apply known strategies to compare data, manipulate reports and data displays to identify trends, use relationship between two variables, calculate and use standard deviation to describe the spread of a data set, compare data sets using the mean and SD.
- Money and financial mathematics - recall simple and compound interest formulas, calculate simple and compound interest, connect simple and compound interest, substitute into a formula, connect graphical and algebraic representations of functions, solve financial problems involving compound interest and loans.

Linear and non-linear relationships - represent and solve problems involving simple linear equations, represent and solve problems involving simple linear inequalities and solve simultaneous equations graphically. Identify the features of a polynomial, connect a written division algorithm and the factor and remainder theorems and sketch polynomials.

- Real numbers - define a logarithm, make connections between exponential and logarithmic expressions, establish and apply the laws of logarithms, simplify expressions using logarithmic laws and solve financial problems involving the use of logarithms.

Balance and coverage of general capabilities and cross-curriculum priorities across 7-10

Whole school assessment plan: 7-10 overview

Categories of student products include: written, spoken/signed, performance, multimodal and visual Systemic_tasks \dagger denotes supervised conditions include: NAPLAN

	Term 1	Term 2	Term 3	Term 4
7	Exam ${ }^{\dagger}$ Short answer. Calculator. Investigating index notation, fractions and integers Students connect whole numbers and index notation, and solve problems involving fractions and integers. Extended Modelling and Problem Solving Task (exam component) Investigating properties of shape and solving an authentic problem Students identify properties of shapes and solve authentic problems using measurements.	NAPLAN ${ }^{\dagger}$ Exam ${ }^{\dagger}$ Short answer. Calculator. Solving algebra and chance problems Students model and solve linear representations, construct sample spaces and assign probabilities.	Extended Modelling and Problem Solving Task Making financial decisions Students calculate and use unit pricing to make financial decisions to develop a costed catering plan. Exam ${ }^{\dagger}$ Short answer. Calculator. Applying integer and real number concepts Students perform calculations and solve problems involving integers, index notation, fractions, decimals, and percentage.	Exam ${ }^{\dagger}$ Short answer. Calculator. Applying data and geometry concepts Students use data displays and measures of centre to make decisions, apply parallel angle relationships and represent transformations.
8	Exam ${ }^{\dagger}$ Short answer. Calculator (2 Lessons). Solving problems involving percentages and profit and loss Students use percentage to calculate commission, mark-up, profit and loss and make financial decisions. Investigating the probability of events Students use probability to make and justify informed conclusions.	Exam ${ }^{\dagger}$ Short answer. Calculator. Applying index, algebra and measurement concepts Students connect and apply mathematical concepts involving indices, algebra and measurement.	Extended Modelling and Problem Solving Task Investigating relationships between game variables Students collect representative data and interpret the results to find relationships between different game variables. Exam ${ }^{\dagger}$ Short answer. Calculator. Applying ratios, linear relationships and time concepts Students solve everyday problems involving rates, ratios, time durations and linear relationships.	Exam ${ }^{\dagger}$ Short answer. Calculator. Applying algebra, geometry and measurement understanding Students solve volume of prism problems, identify and apply congruence of triangles and apply algebraic understanding
9	Exam ${ }^{\dagger}$ Short answer. Calculator. Solving analytical geometry problems Students calculate and solve analytical geometry problems Investigating area and volume problem situations Students investigate an area and volume problem situation and justify conclusions made.	NAPLAN ${ }^{+}$ Exam ${ }^{\dagger}$ Short answer. Calculator. Connecting and applying trigonometry, similarity and algebraic concepts Students connect and apply mathematical concepts involving geometry, algebra and measurement.	Extended Modelling and Problem Solving Task Investigating secondary data Students draw informed conclusions from a data investigation using secondary data. Exam ${ }^{\dagger}$ Short answer. Calculator and Non-Calculator. Applying index laws and simple interest formula Students apply the index laws to numbers, express numbers in scientific notation, expand and simplify binomial expressions, and solve problems involving simple interest.	Exam ${ }^{\dagger}$ Short answer. Calculator. Calculating probability and using timescales Students solve problems involving scientific notation, timescales, scale factors and the calculation of relative frequencies and probabilities.

Investigating probability in a design situation

 Students investigate the use of probability in playing and designing target games
ASSESSMENT ITEM 2: Exam

Short answer. Calculator and Non-Calculator

Investigating probability in a design situation
Students solve problems involving probability

Using Pythagoras' theorem and trigonometry to calculate unknown angles and distances

Students use Pythagoras' theorem, trigonometry ratios and trigonometry rules to calculate unknown angles and distances

Applying algebraic and transformation concepts to relationships

Students solve problems involving linear and non-linear relationships, using algebraic and graphical epresentations

Note: concepts assessed in the PSMT will NOT be included in the exams

Extended Modelling and Problem Solving Task	Exam ${ }^{\dagger}$ Short answer. Calculator. Deta representation and analysis Students demonstrate understandings of parallel box plots and other data displays. Students will analyse and identify relationship.
OR	reasoning compound interest and geometric Solve problems involving simple interest, compound interest and inequalities.
	*The topic from term 3 not covered in extended modelling and problem solving task will be assessed in end of semester 2 exam.

Applying volume, surface area and geometric reasoning
Students solve problems involving surface area and volume of composite solids and apply logical
reasoning and formulate proofs.

ASSESSMENT ITEM 3: Extended Modelling and Problem Solving Task

ASSESSMENT ITEM 4: Exam

Short answer. Calculator and Non-Calculator

Data representation and analysis

Students demonstrate understandings of parallel box plots and bivariate data analysis. Students will analyse and identify relationships.

Applying volume, surface area and geometric reasoning

Students solve problems involving surface area and volume of composite solids and apply logical reasoning and formulate proofs.

Determining compound interest, logarithms, inequalities and polynomials

Students solve problems involving simple interest, compound interest, logarithms, inequalities and polynomials.

Note: concepts assessed in the PSMT will be included in the non-calculator exam, they will NOT be included in the calculator exam

Timing of assessment across 7-10 by learning area

	^ School reporting deadlines											Systemic assessment										School-based assessment $\quad \neq$									The assessment provides an opportunity for planned consistency of teacher judgments activities									
	Term 1										Term 2×10																				Term 4									
Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
7	PAT				\ddagger	NP			$¥$	\wedge				N					$¥$	\wedge				¥					¥	\wedge									$¥$	\wedge
8	PAT								\ddagger	\wedge									$¥$	\wedge				\ddagger					$¥$	\wedge									$¥$	\wedge
9	PAT					NP			$¥$	\wedge				N					$¥$	\wedge				$¥$					$¥$	\wedge									$¥$	\wedge
10	PAT					$¥$				\wedge									$¥$	\wedge									\ddagger	\wedge				$¥$						\wedge
$\begin{aligned} & 10 \\ & \text { EX } \end{aligned}$	PAT					$¥$				\wedge									$¥$	\wedge				$¥$						\wedge				$¥$						\wedge

